Lecture 12. Reduction of Order and Euler Equations

The method of reduction of order

Suppose that one solution $y_1(x)$ of the homogeneous second-order linear differential equation

$$y'' + p(x)y' + q(x)y = 0$$
(1)

is known (on an interval I where p and q are continuous functions).

The method of **reduction of order** consists of substituting $y_2(x) = v(x)y_1(x)$ in (1) and determine the function v(x) so that y(x) is a second linearly independent solution of (1).

After substituting $y_2(x) = v(x)y_1(x)$ in Eq. (1), use the fact that $y_1(x)$ is a solution. We can deduce that

$$y_1v'' + (2y_1' + py_1)v' = 0$$

We can solve this for v to find the solution $y_2(x)$ of equation (1).

Example 1 Consider the equation

$$x^2y'' - 5xy' + 9y = 0 \ (x > 0),$$

Notice that $y_1(x) = x^3$ is a solution. Subsitute $y = vx^3$ and deduce that xv'' + v' = 0. Solve this equation and obtain the second solution $y_2(x) = x^3 \ln x$.

ANS: We write the given eqn in the form of Eq(1).

$$y'' - \frac{1}{x}y' + \frac{9}{x^3}y = 0$$

Let
$$y_{2} = V(x) y_{1}(x) = V(x) x^{3}$$

 $y'_{2} = \underline{V'x^{3}} + \underline{3}\underline{Vx^{2}}$
 $y''_{2} = \underline{V''x^{3}} + \underline{3}\underline{v'x^{2}} + \underline{3}\underline{v'x^{2}} + 6\underline{vx}$
 $= v''x^{3} + 6\underline{v'x^{2}} + 6\underline{x}\underline{v}$

Plug them into
$$\heartsuit$$
.
 $y_{2}'' - \frac{f}{x}y_{2}' + \frac{g}{x^{2}}y_{1} = 0$
 $\Rightarrow V''x^{3} + 6v'x^{2} + 6xv - \frac{f}{x}(v'x^{3} + 3vx^{2}) + \frac{g}{x^{2}}v \cdot x^{3} = 0$
 $\Rightarrow V''x^{3} + 6v'x^{2} + \frac{6xv}{2} - 5v'x^{2} - \frac{15vx}{2} + \frac{9vx}{2} = 0$

 $\Rightarrow v'' x^3 + v' x^2 = 0$ $\Rightarrow x^{2}(v''x + v') = 0$ \Rightarrow v''x + v' = 0Note there is no term in & about v (x). So we can introduce u(x) = V', then V'' = u'Mug them into 🔆 . we have $h' \times + h = 0$ (sep. eqn) $\Rightarrow \frac{\partial u}{\partial x} x = -u$ = $\int \frac{du}{u} = - \int \frac{dx}{x}$ \Rightarrow $\ln|u| = -\ln x + C$, $\Rightarrow e^{\ln |u|} = e^{-h \times + c_1} = c_1 e^{-ln \times c_2}$ \Rightarrow $\mathcal{U} = Ce^{-\ln x} = \frac{C}{x}$ Recall n=v', we have $V' = \frac{dv}{dx} = u = \frac{c}{x} \Rightarrow V(x) = \int \frac{c}{x} dx$ \Rightarrow V(x)= C ln x + C₃ Note it sufficies to find one V(x), so we can take a simple form of V(x) by assuming C=1, C3=0 Then V(x)=ln× So $y_2(x) = V(x) y_1 = x^3 \ln x$ is another solution to \bigotimes Remark: The method still works if the eqn is not in the form of Eq(1). See Exercise 2. Exercise 2. The differential equation

$$x^2rac{d^2y}{dx^2}-7xrac{dy}{dx}+16y=0$$
 ${
m (\ref{eq:started})}$

has $y_1(x) = x^4$ as a solution. Use the method of reduction of order to find a second solution $y_2(x)$.

ANS: Let
$$y_{1} = v(x) y_{1}(x) = vx^{4}$$

Then we calculate:
 $y'_{1} = (vx^{4})' = v'x^{4} + 4vx^{3}$
 $y''_{2} = (v'x^{4} + 4vx^{3})' = v''x^{4} + 4v'x^{3} + 4v'$

W = v'

Then V''=W'Pluq v''=w', V'=w into $\otimes \otimes$, we have xw'+w=0 or $w'+\pm w=0$ (x=0) which is a separable equation. (or you can solve it as a linear first order equ The webwork HW asks us to solve it as linear 1st order eqn. An integrating factor is $p(x) = e^{\int \frac{1}{2} dx} = e^{hx} = x$ (assuming x>0) Thus we have para = xw = Jodx = a (where a is any constant) $\Rightarrow W = \frac{A}{x}$ Recall $W = V' = \frac{a}{x}$ Integrate both sides, we get V= Jadx = alnx +b $[hus y_{2} = v(x)y_{1}(x) = (a \ln x + b)x^{4} = ax^{4} \ln x + bx^{4} is a second$ solution, where a and b are constants. The general solution is $y = C_1y_1 + C_2y_2 = C_1x^4 + C_2(ax^4 \ln x + bx^4)$, which is basically a linear combination of xt and xt lnx So we can state the general solution is $y = ax^4 \ln x + bx^4$

Euler Equation

A second-order Euler equation is one of the form

$$ax^2y'' + bxy' + cy = 0 \tag{2}$$

where a, b, c are constants.

Remark. Note the previous example and exercise are also Euler equations. So the method below also works for **Example 1** and **Exercise 2**.

Example 3. Make the substitution $v = \ln x$ of the following question to find general solutions (for x > 0) of the Euler equation.

$$x^{2}y'' + 2xy' - 12y = 0$$
(3)
Since $v = \ln x$, then

$$y' = \frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{dv}{dv} = \frac{dy}{dv} \cdot \frac{dv}{dx} = \frac{dy}{dv} \cdot \frac{1}{x}$$

$$y'' = \frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} \left(\frac{1}{x} \frac{dy}{dv}\right)$$
product rule

$$= -\frac{1}{x^{2}} \frac{dy}{dv} + \frac{1}{x} \cdot \frac{d}{dx} \left(\frac{dy}{dv}\right)$$

$$= -\frac{1}{x^{2}} \frac{dy}{dv} + \frac{1}{x} \cdot \frac{d}{dx} \cdot \frac{dv}{dv} = \frac{dy}{dv}$$

$$= -\frac{1}{x^{2}} \frac{dy}{dv} + \frac{1}{x} \cdot \frac{d^{2}y}{dx} \cdot \frac{dv}{dv} = \frac{dy}{dv}$$

$$= -\frac{1}{x^{2}} \frac{dy}{dv} + \frac{1}{x^{2}} \frac{d^{2}y}{dv^{2}}$$

$$\Rightarrow -\frac{dy}{dv} + \frac{d^{3}y}{dv^{2}} + 2 \cdot \frac{dy}{dv} - 12y = 0$$

$$\Rightarrow \frac{d^{3}y}{dv^{2}} + \frac{dy}{dv} - 12y = 0$$

This is in the form $ay'' + by' + cy = 0$, where $y''s$
a: function of V.
The char. eqn is
 $\gamma^{2} + r - 12r = 0$
 $\Rightarrow (r+4)(r-3) = 6$
 $\Rightarrow r_{1} = -4$. $r_{2} = 3$ (distinct real roots).
So $y = c_{1}y_{1} + c_{2}y_{2} = c_{1}e^{-4v} + c_{2}e^{3v}$
 $\frac{bodseubs}{av} = \frac{v - 4inx}{1 + c_{2}e^{-4inx}} + c_{2}e^{-4inx}$

=>
$$M(x) = C_1 x^{-4} + C_2 x^{3}$$

This is the general solution to Eq(3)

Example 4. Recall a **second-order Euler equation** is one of the form

$$ax^2y'' + bxy' + cy = 0 \tag{2}$$

where a, b, c are constants.

(a) Show that if x>0, then the substitution $v=\ln x$ transforms Eq. (2) into the constant coefficient linear equation

$$a\frac{d^2y}{dv^2} + (b-a)\frac{dy}{dv} + cy = 0$$

$$\tag{3}$$

with independent variable v.

P

(b) If the roots r_1 and r_2 of the characteristic equation of Eq. (3) are **real and distinct**, conclude that a general solution of the Euler equation in (3) is $y(x) = c_1 x^{r_1} + c_2 x^{r_2}$.

ANS: (a) Let
$$v = hx$$
, then

$$y' = \frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{dv}{dv} = \frac{dy}{dv} \cdot \frac{dv}{dx} = \frac{dy}{dv} \cdot \frac{1}{x}$$

$$y'' = \frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(\frac{1}{x} \frac{dy}{dv} \right)$$
preduct rule

$$= -\frac{1}{x^{2}} \frac{dy}{dv} + \frac{1}{x} \cdot \frac{d}{dx} \left(\frac{dy}{dv} \right)$$

$$= -\frac{1}{x^{2}} \frac{dy}{dv} + \frac{1}{x} \cdot \frac{d}{dx} \cdot \frac{dv}{dv} = \frac{dy}{dv}$$

$$= -\frac{1}{x^{2}} \frac{dy}{dv} + \frac{1}{x} \cdot \frac{d^{2}y}{dv} = \frac{dv}{dv}$$

$$= -\frac{1}{x^{2}} \frac{dy}{dv} + \frac{1}{x} \cdot \frac{d^{2}y}{dv} = \frac{dv}{dv}$$

$$= -\frac{1}{x^{2}} \frac{dy}{dv} + \frac{1}{x} \cdot \frac{d^{2}y}{dv^{2}}$$

$$= -\frac{1}{x^{2}} \frac{dy}{dv} + \frac{1}{x^{2}} \frac{d^{2}y}{dv^{2}}$$

$$= -\frac{1}{x^{2}} \frac{d^{2}y}{dv} + \frac{1}{x^{2}} \frac{d^{2}y}{dv^{2}}$$

(b) If r, r, are real and distinct.

$$\begin{aligned} y(x) &= c_{1}e^{r_{1}v} + c_{2}e^{r_{2}v} = c_{1}(e^{v})^{r_{1}} + c_{1}(e^{v})^{r_{2}} \\ &= c_{1}(e^{\ln x})^{r_{1}} + c_{2}(e^{\ln x})^{r_{2}} \\ &= c_{1}x^{r_{1}} + c_{2}x^{r_{2}} \end{aligned}$$

$$egin{array}{ll} x^2y''+4xy'-10y=0, \ y(1)=4, & y'(1)=-7 \end{array}$$

ANS: Method 1. Directly apply the formula in Example 4.
Compare the given eqn with Eq (2) in Example 4.
We know
$$\alpha = 1$$
, $b=4$, $c=-10$.
Thus if we assume $v=\ln x$, then
 $a\frac{d^2y}{dv^2} + (b-a)\frac{dy}{dv} + cy = 0$ (with $\alpha = 1$, $b=4$, $c=-10$)
 $\Rightarrow \frac{d^2y}{dv^2} + 3 \frac{dy}{dv} - 10 y = 0$.
This is of the form $y'' + 3y' - 10y = 0$ where y is
a function in terms of v.
The char. eqn is
 $\gamma = 5$, $\gamma_1 = -3$

Thus $y(x) = C_1 y_1 + C_2 y_2 = C_1 e^{-5v} + C_2 e^{2v} = C_1 e^{-5lnx} + C_2 e^{2hx}$ = $C_1 x^{-5} + C_2 x^{2}$

As
$$y(1) = 4$$
, $4 = c_1 + c_2$ (D)
Compute $y' = -5C_1 x^{-6} + 2C_2 x$
 $y'(1) = -7$ implies $-7 = -5C_1 + 2C_2$ (2)
Combining (D) (2), we have
 $\int C_1 + C_2 = 4$
 $= 5C_1 + 2C_2 = -7$
 $= 5C_1 + 2C_2 = -7$

Thus

Method 2 Assume
$$v=lnx$$
 and compute y'
 y'' in terms of $v=lnx$ (without knowing the
formula in Example 4)
We have (I'll skip the steps as the first part is identical to
Example 3 and Example 4)
 $y'' = \pm \frac{dy}{dv}$
 $y'' = -\pm \frac{dy}{dv} + \pm \frac{d^2y}{dv^2}$

Plug them into the given eqn (4), we have

$$x^{2}(-\frac{1}{x}\frac{dy}{dv} + \frac{1}{x}\frac{d^{2}y}{dv^{2}}) + 4x(\frac{dy}{dv} + \frac{1}{x}) - 10y = 0$$

$$\Rightarrow -\frac{dy}{dv} + \frac{d^{2}y}{dv^{2}} + 4\frac{dy}{dv} - 10y = 0$$

$$\Rightarrow \frac{d^{2}y}{dv^{2}} + 3\frac{dy}{dv} - 10y = 0$$
The rest part is the same as Method 1.